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Large Message

Communication Model: 𝛼 + 𝑛𝛽,𝛽 =
1

𝐵

• The second term dominates – we want to minimize the second 

term

• We want to utilize the bandwidth as much as possible 



General principles

Ring algorithm has the following advantages

• Fully utilize the bandwidth (bandwidth optimal)

• implementation for arbitrary numbers of node
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Reduce-scatter
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Scatter: Can Ring Be Better?

Notice: Scatter as implemented before using MST was optimal in 
Bandwidth as well (How to Prove?)

AfterBefore



Gather

Notice: Gather as implemented before using MST was optimal in 

bandwidth as well（how to prove?）

AfterBefore



Using the building blocks



Broadcast (Large Message)
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Broadcast (Large Message)
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Broadcast (Large Message)



Cost of scatter/allgather broadcast 

• Assumption: power of two number of nodes

log( p) +
p − 1

p
n

( p − 1) +
p − 1

p
n

(log( p) + p − 1) + 2
p − 1

p
n

scatter

allgather



Cost of scatter/allgather broadcast 

• Assumption: power of two number of nodes
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Vs.  MST broadcast: log(p)   + n( )



Reduce(-to-one) (Large Message)



Reduce (long vector)

Reduce-scatter



Combine-to-one (long vector)
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Cost of Reduce-scatter/Gather Reduce(-to-one) 

•Assumption: power of two number of nodes
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Cost of Reduce-scatter/Gather Reduce(-to-one) 

•Assumption: power of two number of nodes
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log(p)   + n + n( )Vs.  MST reduce:



Allreduce (Large Message)



Reduce-scatter

Allreduce (Large Message)
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Cost of Reduce-scatter/Allgather Allreduce 

• Assumption: power of two number of nodes
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log( p)( + n + n )

log( p)( + n )

2log( p) + 2log( p)n + log( p)n

Cost of Reduce-scatter/Allgather Allreduce

• Assumption: power of two number of nodes
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Recap
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A More Complicate Case

• Real Cluster to train ChatGPT:

• If using GPU: 2D Mesh

• If using TPU: 3D Mesh, see figure below



Summary and Question

• MST -> when alpha dominates

• Ring -> when n*beta dominates

• 2D can be composed using 1D, 3D can be composed using 2D, 

…

• Latency / Bandwidth trade-offs



Recap

• Q1: Which collective primitive maps to the distributed SGD 

gradient synchronization step?

• Q2: How many messages do we need to transfer over the network 

for a single iteration of GPT-3 SGD update assuming 8-gpu 

parallelism?

• Q3: For Q2, assuming 1D mesh, should we use MST or Ring?



Collective Pros

• A set of structured / well-defined communication primitives

• Extremely well-optimized

• Beautiful math, easy to analyze, and easy to understand its 

performance



Collective Cons

• Lack of Fault Tolerance

• What if one node (in the ring) is dead?

• Requires Homogeneity 

• What if one node computes slower than all other nodes?

• What if one link has lower bandwidth than the other node?

Real Cluster:

• Need Fault tolerance

• Heterogeneous hardware setup 



Where we are 

Cloud 

Networking

Collective 
communication

Datacenter 
networking

Storage

(Distributed) File 

Systems / Database

Cloud storage 

Compute

Distributed 
Computing

Motivations, Economics, Ecosystems, 
Trends

Big data 
processing

Skip this



But Some Basic Knowledge Check

• What is a Database

• Have you heard these terms?

• HashTable

• SSTable and LSM-Trees

• BTree?

• Optional readings will cover this – highly recommend to read
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But Some Important Concepts

• OLTP v.s. OLAP

• Data warehousing

• Schemas for Analytics

• Column-oriented storage

• Data cubes and materialized views



75

CRUD



76

Database transactions

• Make sale

• Place an order

• Pay an employee’s salary

• Comment a blog post

• Act in games

• Add/remove contract to an address book

Online transaction processing (OLTP)



77

Walmart Beer and Diaper (1988)

Forbes 1988

https://www.forbes.com/forbes/1998/0406/6107128a.html?sh=2574a9316260

• Unexpected correlation:

• Sales of diapers and 

beer
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Data analytics

• What was the total revenue of each of our stores in Jan?

• How many more bananas than usual did we sell during our 

latest data? 

• Which brand of baby food is most often purchased together 

with brand X diapers?

Online analytic processing (OLAP)
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OLTP v.s. OLAP



80

OLTP v.s. OLAP
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Today’s topic

• OLTP v.s. OLAP

• Data warehousing

• Schemas for Analytics

• Column-oriented storage
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Transaction systems are complex.

Elon Musk's Twitter System Design Diagram Explained

https://www.youtube.com/watch?v=_Y5aGCOkymQ
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Transaction systems need to be highly available.

https://twitter.com/alexxubyte/status/1594008281340530688

• Low latency.

• Highly available. 

• Ad hoc analytic queries are expensive.

https://twitter.com/alexxubyte/status/1594008281340530688
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Data warehouse

• A separate database that analysts can query to their hearts’ 

content, without affecting OLTP operations.

• Maintain a read-only copy for analytic purposes.

• Only exist in almost all large enterprises. 
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Small companies?

https://www.levels.fyi/blog/scaling-to-millions-with-google-sheets.html
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Extract-Transform-Load (ETL)

• Extract

• Periodica data dump

• Continuous streaming

• Transform

• Analysis-friendly schema

• Data cleaning

• Load into a data warehouse
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Why data warehouse?

• Separation of concerns

• Performance (reliability, latency)

• Expertise requirement, management

• The classic indexes (e.g., SSTable, B-tree) are good for reading 

and writing a single record.

• But are not good at answering analytic queries.
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How do you interact with OLAP & OLTP

• SQL query interface 

• Select * from 

• “A database system can be considered mature when it has 

an SQL query interface”.

• Both OLAP and OLTP

• OLAP:

• More and more codeless user interfaces.

• Text2SQL

• Note: This is a big market of innovations



Sumary



More Stories?

100B 83B

800M / ~30 persons400M



Where We Are 

Cloud 

Networking

Collective 
communication

Datacenter 
networking

Storage

(Distributed) File 

Systems / Database

Cloud storage 

Part3: Compute

Distributed 
Computing

Motivations, Economics, Ecosystems, 
Trends

Big data 
processing



Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now



Distributed Computing and Big Data

• Parallelism Basics

• Data Replication and partitioning

• Batched Processing 

• Streaming Processing
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Today’s topic: Parallelism 

• Express data processing in abstraction

• Parallelisms
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Parallel Data Processing

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps

also across machines/workers (aka “Divide and Conquer”)

https://medium.com/cracking-the-data-science-interview/divide-and-conquer-algorithms-b135681d08fc

Remind you of PA1
(hope you’ve 

enjoyed it)



Data Processing: Abstraction

Original data Result dataProcessing 

functions
• sum, mean

• Page rank

• Supervised Learning

• Clustering

• Model inference

• data

• ML models

Q: How to represent various processing functions?
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How to Express Arbitrarily Complex Processing Functions?

Dataflow Graph: common in parallel data processing

• A directed graph representation of a program

• Vertices: abstract operations from a restricted set of computational 

primitives:

• Edges: data flowing directions (hence data dependency)

• Examples

• Relational dataflows: RDBMS, Pandas, Modin

• Matrix/tensor dataflows: NumPy, PyTorch, TensorFlow

• Enables us to reason about data-intensive programs at a higher level
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Example: Relational Dataflow Graph

Aka Logical Query Plan in the DB systems world

Intermediate data

Operators
from extended
relational 
algebra

Input data
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Example: Machine Learning Dataflow Graph
Example Tensor Dataflow Graph

Input data

Operators
From tensor algebra

Intermediate data

Aka Neural network computational graph in ML systems



What is ChatGPT’s dataflow graph Looking like?
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Parallelism

Key parallelism paradigms in data systems
• assuming there will be coordination:

Replicated

Partitioned

Shared Replicated Partitioned
data

Task parallelism

Data 

parallelism

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps

also across machines/workers (aka “Divide and Conquer”)

func

Hybrid 

parallelism

N/A (rare cases)
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