
DSC 204A: Scalable Data Systems

Fall 2025

1

https://hao-ai-lab.github.io/dsc204a-f25/

Staff
Instructor: Hao Zhang

TAs: Mingjia Huo, Yuxuan Zhang

@haozhangml

haozhang@ucsd.edu

@haoailab

https://twitter.com/haozhangml

Large Message

Communication Model: 𝛼 + 𝑛𝛽,𝛽 =
1

𝐵

• The second term dominates – we want to minimize the second

term

• We want to utilize the bandwidth as much as possible

General principles

Ring algorithm has the following advantages

• Fully utilize the bandwidth (bandwidth optimal)

• implementation for arbitrary numbers of node

Allgather

AfterBefore

Cost of bucket Allgather

(p − 1)  +
n

p












=

(p − 1) +
p − 1

p
n

number of steps cost per steps

Reduce-scatter

AfterBefore

Cost

(p − 1)  +
n

p
 +

n

p












=

(p − 1) +
p − 1

p
n +

p− 1

p
n

number of steps cost per steps

𝛾

Scatter: Can Ring Be Better?

Notice: Scatter as implemented before using MST was optimal in
Bandwidth as well (How to Prove?)

AfterBefore

Gather

Notice: Gather as implemented before using MST was optimal in

bandwidth as well（how to prove?）

AfterBefore

Using the building blocks

Broadcast (Large Message)

Scatter

Broadcast (Large Message)

Allgather

Broadcast (Large Message)

Cost of scatter/allgather broadcast

• Assumption: power of two number of nodes

log(p) +
p − 1

p
n

(p − 1) +
p − 1

p
n

(log(p) + p − 1) + 2
p − 1

p
n

scatter

allgather

Cost of scatter/allgather broadcast

• Assumption: power of two number of nodes

log(p) +
p − 1

p
n

(p − 1) +
p − 1

p
n

(log(p) + p − 1) + 2
p − 1

p
n

scatter

allgather

Vs. MST broadcast: log(p)   + n()

Reduce(-to-one) (Large Message)

Reduce (long vector)

Reduce-scatter

Combine-to-one (long vector)

Gather

Cost of Reduce-scatter/Gather Reduce(-to-one)

•Assumption: power of two number of nodes

(p − 1) +
p − 1

p
n +

p− 1

p
n

log(p) +
p− 1

p
n

(log(p) + p − 1) + 2
p − 1

p
n +

p− 1

p
n

Reduce-scatter

gather

Cost of Reduce-scatter/Gather Reduce(-to-one)

•Assumption: power of two number of nodes

(p − 1) +
p − 1

p
n +

p− 1

p
n

log(p) +
p− 1

p
n

(log(p) + p − 1) + 2
p − 1

p
n +

p− 1

p
n

Reduce-scatter

gather

log(p)   + n + n()Vs. MST reduce:

Allreduce (Large Message)

Reduce-scatter

Allreduce (Large Message)

Allgather

Allreduce

(long vector)

Cost of Reduce-scatter/Allgather Allreduce

• Assumption: power of two number of nodes

(p − 1) +
p − 1

p
n +

p − 1

p
n

(p − 1) +
p − 1

p
n

2(p − 1) + 2
p − 1

p
n +

p − 1

p
n

Reduce-scatter

Allgather

log(p)( + n + n)

log(p)( + n)

2log(p) + 2log(p)n + log(p)n

Cost of Reduce-scatter/Allgather Allreduce

• Assumption: power of two number of nodes

(p − 1) +
p − 1

p
n +

p − 1

p
n

(p − 1) +
p − 1

p
n

2(p − 1) + 2
p − 1

p
n +

p − 1

p
n

Reduce-scatter

Allgather

Vs. Reduce-broadcast

allreduce

Recap

Reduce-scatter
(p−1)+

p−1

p
n( +)

Scatter
log(p) +

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p) +

p−1

p
n

Allreduce

Reduce(-to-one)

Broadcast

Recap

Reduce-scatter
(p−1)+

p−1

p
n( +)

Scatter
log(p) +

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p) +

p−1

p
n

Allreduce

Reduce(-to-one)
(p − 1 + log(p)) +

p−1

p
n(2 + )

Broadcast

Recap

Reduce-scatter
(p−1)+

p−1

p
n( +)

Scatter
log(p) +

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p) +

p−1

p
n

Allreduce
2(p − 1) +

p−1

p
n(2 + )

Reduce(-to-one)
(p − 1 + log(p)) +

p−1

p
n(2 + )

Broadcast
(log(p) + p − 1) + 2

p−1

p
n

Recap

Reduce-scatter
(p−1)+

p−1

p
n( +)

Scatter
log(p) +

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p) +

p−1

p
n

Allreduce
2(p − 1) +

p−1

p
n(2 + )

Reduce(-to-one)
(p − 1 + log(p)) +

p−1

p
n(2 + )

Broadcast

Recap

Reduce-scatter
(p−1)+

p−1

p
n( +)

Scatter
log(p) +

p−1

p
n

Allgather
(p−1)+

p−1

p
n

Gather
log(p) +

p−1

p
n

Allreduce
2(p − 1) +

p−1

p
n(2 + )

Reduce(-to-one)
(p − 1 + log(p)) +

p−1

p
n(2 + )

Broadcast
(log(p) + p − 1) + 2

p−1

p
n

A More Complicate Case

• Real Cluster to train ChatGPT:

• If using GPU: 2D Mesh

• If using TPU: 3D Mesh, see figure below

Summary and Question

• MST -> when alpha dominates

• Ring -> when n*beta dominates

• 2D can be composed using 1D, 3D can be composed using 2D,

…

• Latency / Bandwidth trade-offs

Recap

• Q1: Which collective primitive maps to the distributed SGD

gradient synchronization step?

• Q2: How many messages do we need to transfer over the network

for a single iteration of GPT-3 SGD update assuming 8-gpu

parallelism?

• Q3: For Q2, assuming 1D mesh, should we use MST or Ring?

Collective Pros

• A set of structured / well-defined communication primitives

• Extremely well-optimized

• Beautiful math, easy to analyze, and easy to understand its

performance

Collective Cons

• Lack of Fault Tolerance

• What if one node (in the ring) is dead?

• Requires Homogeneity

• What if one node computes slower than all other nodes?

• What if one link has lower bandwidth than the other node?

Real Cluster:

• Need Fault tolerance

• Heterogeneous hardware setup

Where we are

Cloud

Networking

Collective
communication

Datacenter
networking

Storage

(Distributed) File

Systems / Database

Cloud storage

Compute

Distributed
Computing

Motivations, Economics, Ecosystems,
Trends

Big data
processing

Skip this

But Some Basic Knowledge Check

• What is a Database

• Have you heard these terms?

• HashTable

• SSTable and LSM-Trees

• BTree?

• Optional readings will cover this – highly recommend to read

74

But Some Important Concepts

• OLTP v.s. OLAP

• Data warehousing

• Schemas for Analytics

• Column-oriented storage

• Data cubes and materialized views

75

CRUD

76

Database transactions

• Make sale

• Place an order

• Pay an employee’s salary

• Comment a blog post

• Act in games

• Add/remove contract to an address book

Online transaction processing (OLTP)

77

Walmart Beer and Diaper (1988)

Forbes 1988

https://www.forbes.com/forbes/1998/0406/6107128a.html?sh=2574a9316260

• Unexpected correlation:

• Sales of diapers and

beer

78

Data analytics

• What was the total revenue of each of our stores in Jan?

• How many more bananas than usual did we sell during our

latest data?

• Which brand of baby food is most often purchased together

with brand X diapers?

Online analytic processing (OLAP)

79

OLTP v.s. OLAP

80

OLTP v.s. OLAP

81

Today’s topic

• OLTP v.s. OLAP

• Data warehousing

• Schemas for Analytics

• Column-oriented storage

82

Transaction systems are complex.

Elon Musk's Twitter System Design Diagram Explained

https://www.youtube.com/watch?v=_Y5aGCOkymQ

83

Transaction systems need to be highly available.

https://twitter.com/alexxubyte/status/1594008281340530688

• Low latency.

• Highly available.

• Ad hoc analytic queries are expensive.

https://twitter.com/alexxubyte/status/1594008281340530688

84

Data warehouse

• A separate database that analysts can query to their hearts’

content, without affecting OLTP operations.

• Maintain a read-only copy for analytic purposes.

• Only exist in almost all large enterprises.

85

Small companies?

https://www.levels.fyi/blog/scaling-to-millions-with-google-sheets.html

86

Extract-Transform-Load (ETL)

• Extract

• Periodica data dump

• Continuous streaming

• Transform

• Analysis-friendly schema

• Data cleaning

• Load into a data warehouse

87

Why data warehouse?

• Separation of concerns

• Performance (reliability, latency)

• Expertise requirement, management

• The classic indexes (e.g., SSTable, B-tree) are good for reading

and writing a single record.

• But are not good at answering analytic queries.

88

How do you interact with OLAP & OLTP

• SQL query interface

• Select * from

• “A database system can be considered mature when it has

an SQL query interface”.

• Both OLAP and OLTP

• OLAP:

• More and more codeless user interfaces.

• Text2SQL

• Note: This is a big market of innovations

Sumary

More Stories?

100B 83B

800M / ~30 persons400M

Where We Are

Cloud

Networking

Collective
communication

Datacenter
networking

Storage

(Distributed) File

Systems / Database

Cloud storage

Part3: Compute

Distributed
Computing

Motivations, Economics, Ecosystems,
Trends

Big data
processing

Where We Are

Foundations of Data Systems

Cloud

Machine Learning Systems

Big Data

1980 - 2000

2000 - 2016

2010 - Now

Distributed Computing and Big Data

• Parallelism Basics

• Data Replication and partitioning

• Batched Processing

• Streaming Processing

94

Today’s topic: Parallelism

• Express data processing in abstraction

• Parallelisms

95

Parallel Data Processing

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps

also across machines/workers (aka “Divide and Conquer”)

https://medium.com/cracking-the-data-science-interview/divide-and-conquer-algorithms-b135681d08fc

Remind you of PA1
(hope you’ve

enjoyed it)

Data Processing: Abstraction

Original data Result dataProcessing

functions
• sum, mean

• Page rank

• Supervised Learning

• Clustering

• Model inference

• data

• ML models

Q: How to represent various processing functions?

97

How to Express Arbitrarily Complex Processing Functions?

Dataflow Graph: common in parallel data processing

• A directed graph representation of a program

• Vertices: abstract operations from a restricted set of computational

primitives:

• Edges: data flowing directions (hence data dependency)

• Examples

• Relational dataflows: RDBMS, Pandas, Modin

• Matrix/tensor dataflows: NumPy, PyTorch, TensorFlow

• Enables us to reason about data-intensive programs at a higher level

98

Example: Relational Dataflow Graph

Aka Logical Query Plan in the DB systems world

Intermediate data

Operators
from extended
relational
algebra

Input data

99

Example: Machine Learning Dataflow Graph
Example Tensor Dataflow Graph

Input data

Operators
From tensor algebra

Intermediate data

Aka Neural network computational graph in ML systems

What is ChatGPT’s dataflow graph Looking like?

101

Parallelism

Key parallelism paradigms in data systems
• assuming there will be coordination:

Replicated

Partitioned

Shared Replicated Partitioned
data

Task parallelism

Data

parallelism

Central Issue: Workload takes too long for one processor!

Basic Idea: Split up workload across processors and perhaps

also across machines/workers (aka “Divide and Conquer”)

func

Hybrid

parallelism

N/A (rare cases)

	Slide 1: DSC 204A: Scalable Data Systems Fall 2025
	Slide 2: Large Message
	Slide 3: General principles
	Slide 4: Allgather
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Cost of bucket Allgather
	Slide 24: Reduce-scatter
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Cost
	Slide 44: Scatter: Can Ring Be Better?
	Slide 45: Gather
	Slide 46: Using the building blocks
	Slide 47: Broadcast (Large Message)
	Slide 48: Broadcast (Large Message)
	Slide 49: Broadcast (Large Message)
	Slide 50: Cost of scatter/allgather broadcast
	Slide 51: Cost of scatter/allgather broadcast
	Slide 52: Reduce(-to-one) (Large Message)
	Slide 53: Reduce (long vector)
	Slide 54: Combine-to-one (long vector)
	Slide 55: Cost of Reduce-scatter/Gather Reduce(-to-one)
	Slide 56: Cost of Reduce-scatter/Gather Reduce(-to-one)
	Slide 57: Allreduce (Large Message)
	Slide 58: Allreduce (Large Message)
	Slide 59: Allreduce (long vector)
	Slide 60: Cost of Reduce-scatter/Allgather Allreduce
	Slide 61: Cost of Reduce-scatter/Allgather Allreduce
	Slide 62: Recap
	Slide 63: Recap
	Slide 64: Recap
	Slide 65: Recap
	Slide 66: Recap
	Slide 67: A More Complicate Case
	Slide 68: Summary and Question
	Slide 69: Recap
	Slide 70: Collective Pros
	Slide 71: Collective Cons
	Slide 72: Where we are
	Slide 73: But Some Basic Knowledge Check
	Slide 74: But Some Important Concepts
	Slide 75: CRUD
	Slide 76: Database transactions
	Slide 77: Walmart Beer and Diaper (1988)
	Slide 78: Data analytics
	Slide 79: OLTP v.s. OLAP
	Slide 80: OLTP v.s. OLAP
	Slide 81: Today’s topic
	Slide 82: Transaction systems are complex.
	Slide 83: Transaction systems need to be highly available.
	Slide 84: Data warehouse
	Slide 85: Small companies?
	Slide 86: Extract-Transform-Load (ETL)
	Slide 87: Why data warehouse?
	Slide 88: How do you interact with OLAP & OLTP
	Slide 89: Sumary
	Slide 90: More Stories?
	Slide 91: Where We Are
	Slide 92: Where We Are
	Slide 93: Distributed Computing and Big Data
	Slide 94: Today’s topic: Parallelism
	Slide 95: Parallel Data Processing
	Slide 96: Data Processing: Abstraction
	Slide 97: How to Express Arbitrarily Complex Processing Functions?
	Slide 98: Example: Relational Dataflow Graph
	Slide 99: Example: Machine Learning Dataflow Graph
	Slide 100: What is ChatGPT’s dataflow graph Looking like?
	Slide 101: Parallelism

